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We present a theoretical model describing Ogston �pore size comparable to or larger than the characteristic
molecular dimension� sieving of rigid isotropic and anisotropic biomolecules in nanofluidic molecular filter
arrays comprising of alternating deep and shallow regions. Starting from a quasi-one-dimensional drift-
diffusion description, which captures the interplay between the driving electric force, entropic barrier and
molecular diffusion, we derive explicit analytical results for the effective mobility and trapping time. Our
results elucidate the effects of field strength, device geometry and entropic barrier height, providing a robust
tool for the design and optimization of nanofilter/nanopore systems. Specifically, we show that Ogston sieving
becomes negligible when the length of shallow region becomes sufficiently small, mainly due to efficient
diffusional transport through the short shallow region. Our theoretical results are in line with experimental
observations and provide important design insight for nanofluidic systems.
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I. INTRODUCTION

Understanding the physics of molecular sieving and filtra-
tion processes in porous materials, nanofilters or nanopores
is of great importance in many areas of science and engineer-
ing �1–3�. The advent of micro- and nanofabrication has en-
abled a number of exciting new approaches in the area of
nanofiltration; devices providing superior process control
�e.g., precise and repeatable geometry, optical access, etc.�
may now be built and optimized. One particular type of de-
vice consisting of a large number of deep wells connected by
shallow slits �see Fig. 1�a�� has emerged as a promising gel-
free sieving medium for separation of biomolecules includ-
ing DNA, small proteins, etc. �4–7�. In addition to their use
as a separation device, these systems are also ideal as experi-
mental platforms for the study of the physics of nanoscale
molecular sieving and filtration.

Experimental studies reveal that depending on the relative
size of the molecule and slit �pore�, different sieving mecha-
nisms dominate �8�. Such studies have established that in the
regime where the size of the biomolecule is smaller or com-
parable to the pore size, smaller molecules travel faster than
bigger ones; this regime is known as Ogston sieving �8�. On
the other hand, in the regime where the size of polyelectro-
lytes is much greater than the size of the pore, longer

molecules migrate faster than shorter ones �5,7�; the trapping
mechanism in this regime is known as entropic trapping.

So far, a considerable number of theoretical and simula-
tion studies of the transport dynamics in such systems have
appeared �9–21�. Although these studies take a variety of
points of view, most of simulation approaches use coarse-
grained mesoscopic models to study the transport of long,
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FIG. 1. �a� The nanofilter array consisting of alternative deep
wells and shallow regions. �b� The potential-energy profile of a
charged molecule along the nanofilter channel.
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flexible molecules. Accurate description of such systems re-
quires characterization of the polymer chain geometry and
flexibility, the geometry of the filter or the pore, the presence
of a nonuniform electric field, excluded volume effects �11�,
pore physical properties �13,14�, electro-osmotic flow
�15,18�, and even the probability of hairpin formation as an
initiator of polymer translocation �20,21�. Although some of
this previous work provides key insights into the physical
mechanisms and reproduces some experimental results quali-
tatively, the development of closed-form theoretical descrip-
tions of the experimentally observed behavior remains very
challenging and largely elusive.

In the Ogston sieving regime in particular, it is well
known that the sieving effect is primarily caused by the steric
hindrance at the pore entrance; as a result, the transport pro-
cess was originally characterized by the free-volume model
�22–24�. While this is strictly an equilibrium model, it is a
good approximation for most molecular �gel and nanofilter�
sieving situations. As an extension of the simple free-volume
model, Fu et al. �7� recently incorporate the partitioning ef-
fect of orientational entropy �25� into a simplified Kramers
rate theory to analyze their experimental results of molecular
sieving in an array of regular periodic constrictions. Using
this model, they were able to describe the field-dependent
mobility of biomolecules in Ogston sieving, achieving a step
forward from the near-equilibrium free-volume model. While
their experimental results clearly demonstrated the existence
of an Ogston sieving regime, a recent experiment with ul-
trashort ��10 nm� nanopores �26� reported a hard-core siev-
ing behavior �exhibiting an abrupt cutoff in the transport of
molecules exceeding some well-defined size� suggesting that
nanopore/nanofilter systems exhibit significant sensitivity on
structural parameters.

Besides the work of Fu et al. �7�, other theoretical models
of Ogston sieving based �mostly� on Kramers rate theory
have been proposed �27–29�. Unfortunately, the physical set-
ting assumed within the Kramers model is sufficiently differ-
ent from that in nanofluidic filtration systems that quantita-
tive predictions from the former are unreliable. For example,
the Kramers model assumes parabolic potential landscape
shapes �barrier/well�, while the actual shape of the potential
landscape in typical nanofiltration systems of interest as the
one shown in Fig. 1�a�, is approximately piecewise linear
�see Fig. 1�b��; additionally, the field-induced aggregation of
molecules near the interfaces between the well and the bar-
rier enhances the escape of molecules from the trap and
speeds up the molecular transport; moreover, this aggrega-
tion of molecules induces a diffusive flux that differs from
that in the Kramers model and may have a significant effect
under certain conditions, especially when ultra short shallow
regions are involved. Due to these differences, the Kramers
model is expected to provide quantitatively reasonable re-
sults only under conditions of high barrier height and/or low
field.

In order to gain more insight into the mechanism of
Ogston sieving in nanofilter arrays, the present authors con-
ducted simulation studies based on a continuum transport
model �30� and macrotransport theory �31�. In these studies,
the effects of channel size, slant angle, field strength, en-
tropic barrier, and electroosmotic flow have been investi-
gated qualitatively.

In the present paper, we derive an explicit analytical so-
lution for the effective Ogston mobility of isotropic and an-
isotropic molecules in a nanofilter array using a drift-
diffusion �Fokker-Planck� formulation within a quasi-one-
dimensional �1D� geometry. Our results provide explicit
relations quantifying �within the limits of applicability of the
one-dimensional formulation� the effects of various design
parameters, with no need for computationally expensive
simulations. As we show in the discussion section, these re-
sults elucidate the contribution of several important transport
mechanisms in the sieving processes, further contributing to-
ward improved design and optimization of such devices. For
example, unlike theories based on the Kramers model
�6,28,29�, the proposed model incorporates and couples in-
formation about the actual potential-energy landscape and
diffusive transport in the entire device; as a result, as we
show below, it not only captures, but is also able to quantify
the effects of field-induced molecular aggregation at the
deep-shallow—and depletion at the shallow-deep—
transitions and its concomitant effect on transport.

Our formulation draws upon macrotransport theory �32�.
A similar mathematical formulation albeit describing a dif-
ferent physical scenario—namely, the transport of spherical
particles across a series of alternating immiscible fluid layers
of different viscosity driven by a constant force—has ap-
peared before �33�. In addition to the different physical con-
text, the solution of �33� differs from ours in one important
way: due to the constant force considered in �33�, the ratio of
drift velocity to diffusion coefficient �i.e., a measure of the
Peclet number� is the same in the two fluid layers. On the
other hand, in our formulation, due to a constant diffusion
coefficient and variable force, the ratio of drift velocity to
diffusion coefficient varies between the shallow and deep
regions of the nanochannel. In fact, the two solutions become
equivalent only in the limit where the nanofilter narrow and
deep regions have the same depth �that is of no interest here�,
corresponding to a case of immiscible fluid layers that have
the same viscosity.

II. FORMULATION

Description of the electric-field driven migration of
charged Brownian particles in the nanofilter array shown in
Fig. 1�a� under an external field is challenging because of the
nonuniform electric field, variable device cross section, and
the effect of the orientational degrees of freedom of the an-
isotropic biomolecules of interest here. In this work, we de-
rive analytical results for the effective mobility and the trap-
ping time for transport of these molecules based on a
simplified one-dimensional model using macrotransport
theory, a rigorous scheme for describing molecular transport
in periodic structures in the long-time limit. In our model,
anisotropic biomolecules are modeled as charged Brownian
particles in a potential field, with their orientational degrees
of freedom accounted for by an entropy term. The two-
dimensional electric field is replaced by a one-dimensional
effective field, which is piecewise constant in the deep and
shallow regions, respectively.
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A. Problem statement

We consider the transport of small, charged, Brownian,
anisotropic biomolecules in nanodevices of the type shown
in Fig. 1, comprising a large number �N�10 000� of alter-
nating deep wells �length ld and depth dd� and shallow re-
gions �length ls and depth ds� and kept at a constant tempera-
ture T. We assume that the molecules of interest are
sufficiently short or rigid for a rigid-molecule approximation
to be reasonable. Such molecules are treated as rigid cylin-
drical rods, lengths of which are determined using the
Kratky-Porod model �34,35�.

Let R= �X ,Y ,Z� denote the position vector with respect to
a fixed origin located at point A as shown in Fig. 1, with X
denoting the axial channel direction, Y the channel depth
direction and Z the width direction. Also, let L= ld+ ls be the
repeat length, �=ds /dd �0���1� represent the depth ratio
and �= ls / ld the length ratio between the shallow region and
deep well of the nanofilter.

The device is subject to an electric field of “average”
magnitude Eav=�� / �NL�, where ��=��NL�−��0� is the
electric potential difference applied across the device. The
relative importance of diffusion and electric force is quanti-
fied by the �translational� Peclet number �36� given by

Pe = �� , �1�

where

� =
�

� + �
�dd

ld
�2

, �2�

is a nanochannel-specific constant, and

� = − q̃EavL/kBT , �3�

is the dimensionless energy drop over a unit of nanochannel
��	0�. Here kB is Boltzmann’s constant and q̃ is the mol-
ecule effective charge discussed in detail in the next section
�we assume q̃
0 due to the fact the DNA molecules carry
negative charges�. As we discuss below, although our math-
ematical solution is valid for all Pe, our modeling assump-
tions require Pe�1, although they remain reasonable up to
Pe�O�1�, this range of Pe includes the majority of applica-
tions of interest here. Also note that for typical device geom-
etries
��1, implying that Pe�1 may be satisfied even for large
values of �; for example, the nanofilter device primarily
studied later �ds=55 nm, dd=300 nm, and ld= ls=0.5 �m�
is characterized by ��0.056.

B. Effective charge

In our model, electric-field driven motion of biomolecules
is characterized by an effective charge q̃. Such a description
is necessary because in aqueous solutions the effective
charge of a polyelectrolyte appears to be much lower than
the net charge q carried by its elements in vacuum �37–39�
due to significant screening from the counterion cloud sur-
rounding the molecule. This aggregation of counterions is
also responsible for the difference observed in experiments
between the effective hydrodynamic friction coefficient for

diffusion d and the friction coefficient for electric-driven
motion e �40,41�. This is because when the molecule is sub-
jected to random thermal motion, most of the surrounding
counterions move with it; on the other hand, when a poly-
electrolyte is driven by an electrostatic field, the counterions
surrounding it will move in the opposite direction.

The approach taken here is to choose the value of the
effective charge such that diffusion and the electric-field-
driven motions are unified with a common, orientationally
averaged, friction coefficient , chosen here to be equal to
the friction coefficient for diffusion, i.e., =d. This choice is
informed by experiments �42�, which show that the diffusion
coefficient

Dd = kBT/d �4�

remains unaltered in the presence of electric fields. To deter-
mine the value of the effective charge, we consider the drift
speed of a molecule in aqueous solution subjected to an elec-
trostatic field of strength E, and require that the observed

velocity, Ṽ=qE /e, be equal to the theoretical velocity using

the unified friction coefficient, i.e., Ṽ= q̃E /. This require-
ment implies that the effective charge of the polyelectrolyte
is given by q̃=q /e. Expressing the charge in terms of more
experimentally accessible diffusion coefficient in Eq. �4� and

electrophoretic mobility �43�, �0= 	Ṽ	 / 	E	, the effective
charge acquires the form,

q̃ = − kBT�0/Dd. �5�

C. Dynamics of biomolecule transport in periodic nanofilter
arrays

The motion of a Brownian particle of mass m in a poten-
tial field is described by the Langevin equation �44�,

mR̈ = − �U�R� − Ṙ�t� + ��t� �6�

where R
�X ,Y ,Z� denotes the location of the particle,

U�R� is the potential field, � is the gradient operator, and Ṙ,

R̈ are the particle velocity and acceleration, respectively. The
fluctuating force ��t� is a vector of Gaussian white-noise
form, satisfying �44�

���t�� = 0 ,

���t���t��� = 2kBT��t − t��I . �7�

where ��t− t�� is the Dirac delta function and I denotes the
identity tensor.

In the highly damped �strong friction� regime, where the
inertial force in Eq. �6� is negligible compared with other
forces, the stochastic dynamics of a particle can be described
by the probability density function P�R , t� for the particle
appearing at point R in the device at time t, whose time
evolution is governed by the Fokker-Planck equation �29�,

�P�R,t�
�t

= − � · J�R,t� , �8�

with the probability flux J�R , t� given by
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J�R,t� = −
kBT


� P�R,t� −

1


P�R,t� � U�R� . �9�

The probability density function satisfies the normalization
condition

  
�

P�R,t�d3R = 1, �10�

where � represents the entire device volume.
Instead of solving the governing equations in the entire

device volume, macrotransport theory �32� states that one
can obtain the mean molecule velocity �and other transport
quantities of interest� from a reduced intracellular descrip-
tion, involving the probability function P0

��r�, which de-
scribes the long-time particle probability density as a func-
tion of the local coordinate r
�x ,y ,z�, regardless of the
specific repeat the molecule resides in �32,45�. Under this
formulation, the reduced intracellular probability function
P0

��r� in the steady state is governed by

� · J0
��r� = 0 �11�

where the probability flux J0
��r� is given by

J0
��r� = −

kBT


� P0

��r� −
1


P0

��r� � U�r� . �12�

The normalization condition now requires that

  
�0

P0
��r�d3r = 1, �13�

where �0 represents the interstitial space of one unit of the
nanofilter. In the present work the repeated unit was chosen
as shown in Fig. 1�a� �identified by the dotted lines�; note,
however, that within macrotransport theory, this choice is
arbitrary and mostly a matter of convenience �32�.

Finally, P0
��r� must be continuous at the boundaries with

adjacent repeats of the nanofilter. By solution of Eqs.
�11�–�13� with suitable boundary conditions, one can obtain
the asymptotic �long-time� values of effective mobilities as
described in Sec III below.

D. Orientational entropy

We proceed by modeling the biomolecules of interest as
point particles by accounting for their orientational distribu-
tions through a local partition function ��r�, where r denotes
the molecule center of mass. As defined here, ��r� quantifies
the relative occurrence of mass centers at position r com-
pared with that in a bulk solution. In the quasiequilibrium
state assumed here �where all the possible orientations of a
rigid molecule are equally accessible� ��r� is equal to the
local orientational partition function, which describes the ra-
tio of number of permissible orientations to the total number
of possible orientations �25�. Here a permissible orientation
is one that involves no intersection between the molecule and
the solid wall.

This quasiequilibrium approximation can be justified by
the fact that the characteristic relaxation time associated with
rotational diffusion is many orders of magnitude shorter than
the average transit time for one device repeat. At room tem-
perature, the rotational diffusion coefficient for 300bp
DNA molecules is estimated to be of the order of
Dr�104 rad2 /s �46�. The corresponding relaxation time
tr=1 /Dr�10−4 s, is thus much smaller than the average
residence time in each repeat ��0.1 s� �30�. Moreover, for
the small molecules and low-to-moderate electric fields of
interest here, the effect of electric torque is small. This can
be quantified by calculating the rotational Peclet number
�36�,

Per = �
1 − �

1 + �
� , �14�

where � is the ratio of molecule length to L. For Ogston
sieving in typical devices of interest, ��1; as a result, the
condition Per�1 is typically satisfied when Pe�1.

Based on this formulation, the local partition may be ex-
pressed in terms of an orientational entropy,

S�r� = kB ln ��r� , �15�

leading to a potential energy �see Eqs. �9� and �12�� of the
form

U�r� = q̃��r� − kBT ln ��r� , �16�

where ��r� represents the potential value of the external
electric field at point r.

E. One-dimensional formulation

Since the net transport of DNA molecules takes place in
the direction of the channel axis, under appropriate condi-
tions, the degrees of freedom in the depth and width direc-
tions of the channel can be eliminated by proper projections.
In particular, because the width of the channel is significantly
larger than the maximum channel depth �dd� and no external
force is applied in the width �z� direction, we may assume
that the distribution in the z direction is uniform. In addition,
provided equilibrium in the y direction of the channel is
maintained by translational diffusion �i.e., the translational
diffusion is dominant over drift due to the electric force� the
distribution in the y direction may be assumed to be in the
quasiequilibrium state determined by the local partition func-
tion. In addition to translational diffusion, we also note that
the convective flux induced by the nonuniform electric-field
lines at the transition between the deep and shallow regions
additionally contributes toward a quasiequilibrium probabil-
ity distribution in the y direction. Below we describe how a
one-dimensional model is constructed from the general
three-dimensional description presented above.

1. Electric field

Assuming fully insulating walls and applying a resistance
in series model �resistance is inversely proportional to the
area of the channel�, we obtain the following expressions for
the field strengths in the deep and shallow regions:
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Ed =
��1 + ��

� + �
Eav;

Es =
1 + �

� + �
Eav. �17�

2. Partition coefficients

From our discussion above, we expect the partition func-
tion ��r� to be independent of y and z. Moreover, since the
partition function is not a function of x in both the deep and
shallow regions except close to the transition �assumed here
to be very sharp�, we can describe the restriction on particle
orientational distributions using a uniform �averaged� parti-
tion function for the deep �Kd� and shallow �Ks� regions of
the nanofilter, respectively. By this formulation, Kd and Ks
quantify the probability of a molecule appearing in the deep
and shallow region of channel, respectively, compared to that
in the respective volume of free solution, i.e.,

Kd =  
�d

��r�d3r� 
�d

d3r;

Ks =  
�s

��r�d3r� 
�s

d3r , �18�

where �d and �s denote the volumetric spaces of the deep
and shallow regions of the nanofilter, respectively. We thus
arrive at an experimentally relevant constant, namely, the
partition coefficient,

K = Ks/Kd, �19�

which describes the ratio of equilibrium concentration of a
biomolecule in the shallow and deep regions of the nanofil-
ter. Partition coefficients can be readily incorporated within
macrotransport theory; a recent example includes modeling
Brownian particles in two immiscible fluids for vector chro-
matography applications �33,47�.

Equilibrium at the boundaries of the deep and shallow
regions requires that

P0
��ld+,y,z� = KP0

��ld−,y,z�;

P0
��0−,y,z� = KP0

��0+,y,z� . �20�

Note that the second jump condition occurs at the unit-cell
periodic boundary.

3. Probability field

We proceed by reducing the dimensionality of the prob-
ability field. We define the steady-state marginal intracellular
probability function �Px,0

� � by

Px,0
� �x� = 

A�x�
P0

��x,y,z�dydz , �21�

where A�x� denotes the cross section at point x along channel
axis in the reduced unit cell. From our discussions above,
P0

��x ,y ,z� is independent of y and z �P0
��x ,y ,z�
 P0

��x��,
which yields

Px,0
� �x� = �wddP0

��x� 0 
 x 
 ld

wdsP0
��x� ld 
 x 
 L

.� �22�

The normalization condition �Eq. �13�� becomes


0

L

Px,0
� �x� = 1. �23�

The boundary condition �Eq. �20�� takes the form

Px,0
� �ld+� = �KPx,0

� �ld−�;

Px,0
� �0−� = �KPx,0

� �0+��Px,0
� �L−� = �KPx,0

� �L+�� �24�

The above relationships may be cast as an effective partition
coefficient between the deep and shallow region of magni-
tude �K. These relationships also lead to a potential-energy
barrier,

�W = − kBT ln �K �25�

in the shallow region of 1D effective channel �see Fig. 1�b��.
Finally the expression of the 1D energy landscape �Ux�, takes
the form

Ux�x� = � q̃Edx 0 
 x 
 ld

− kBT ln �K + q̃Edld + q̃Es�x − ld� ld 
 x 
 L
.�
�26�

4. Conservation of probability

We complete the projection procedure by deriving the
one-dimensional form of probability conservation �Eq. �11��.
Let

J0
��r� 
 ��J0

��r��x,�J0
��r��y,�J0

��r��z� . �27�

By integrating Eq. �11� over the volume of the cell between
two arbitrary x locations and using the divergence theorem,
as well as the assumption that �J0

��r��x is independent of y
and z, we obtain

Jx,0
� �x� = 

A�x�
�J0

��x��xdydz = const = J0, �28�

Jx,0
� �x� = −

kBT



dPx,0
� �x�
dx

−
1


Px,0

� �x�
dUx�x�

dx
. �29�

Flux equations �Eqs. �28� and �29�� with the potential-energy
landscape given by Eq. �26�, subject to normalization �Eq.
�23�� and boundary conditions �Eq. �24�� constitute the 1D
macrotransport description of the molecular transport in the
nanofilter array given in Fig. 1. Solution of these equations is
described below.
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III. SOLUTION FOR THE MOBILITY AND TRAPPING TIME

Since Jx,0
� �x�=J0, multiplying both sides of Eq. �29� by eUx�x�/kBT, and integrating the products over the unit cell of nanofilter

�cf. Fig. 1�b��, the following expression is obtained:

J0 =
kBT


�Px,0

� �0+�eUx�0+�/kBT − Px,0
� �L+�eUx�L+�/kBT��

0+

L+

eUx�x�/kBTdx . �30�

Substituting Ux�x� from Eq. �26� into Eq. �30�, and applying the boundary condition

Px,0
� �0+� = Px,0

� �L+� = p0, �31�

we obtain the following expression for J0:

J0 =
kBT

ld

p0�K�

�1 − �d�1 − K���� + ��
, �32�

where

�d = �1 − e−��/��+���/�1 − e−�� . �33�

Substituting J0 from Eq. �32� into Eq. �29�, we obtain

Px,0
� �x� = �

K�1 − e−�� + �1 − e−��/��+���e−���1−x/ld���+��

�1 − e−���1 − �d�1 − K��
p0, 0 
 x 
 ld

1 − �d�1 − K�e−��1+�−x/ld�/��+��

1 − �d�1 − K�
�Kp0, ld 
 x 
 L .� �34�

It is straightforward to verify that this solution satisfies both jump conditions given in Eq. �24�.
The average speed of the particles, J0 / Px,0

� �x�, is given by

Vx,0
� �x� = �

kBT

ld

�K

�� + ��
�1 − e−���

�K�1 − e−�� + �1 − K��1 − e−��/��+���e−���1−x/ld�/��+���
0 
 x 
 ld

kBT

ld

1

�� + ��
�

�1 − �d�1 − K�e−��1+�−x/ld�/��+���
ld 
 x 
 L .� �35�

The physical definition of the speed Vx,0
� �x�=dx /dt allows one to obtain the transit time in the nanofilter by

� = 
0

L

�Vx,0
� �x��−1dx = �1 + �t��travel, �36�

where

�travel =
�� + ���1 + ���

�1 + ��2�

L

�0Eav
�37�

is the minimum travel time �in the absence of sieving� and the factor �t is given by

�t =
�1 − K�

K

�1 − �2K�
�1 + ���

�� + ��
�

�1 − e−��/��+����1 − e−��/��+���
�1 − e−���

. �38�

The trapping time in the nanofilter caused by the entropy
barrier can be written as

�trap = � − �travel = �t�travel �39�

From the average drift velocity V̄=L /� one can get the

effective mobility in the nanofilter �= V̄ /Eav, which finally
takes the form,

� =
L

�Eav
=

1

1 + �t
�max �40�

where
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�max =
�1 + ��2�

�� + ���1 + ���
�0 �41�

is the maximum sieving-free mobility �in the absence of
sieving�.

One can verify the accuracy of these expressions by veri-
fying that they reproduce some established limiting results.
For example, for the transport of point-sized particles
�K=1� one obtains �t=0, which yields �=�max and
�trap=0 �no sieving�. In the limit of severe sieving �K�1� of
molecules through small pores ���1� under low electric
fields ���1�, we obtain �t�1 /K, which implies
��K�max, reproducing the so-called free-volume model
�22–24�.

IV. RESULTS AND DISCUSSION

In this section we present some results and predictions
obtained from our model for transport of short, rigid, rodlike
dsDNA molecules in the nanofilter array shown in Fig. 1
under varied electric fields. These results are compared to
relevant theoretical models or experimental observations and
serve to highlight the utility as well as the weaknesses of our
model.

The geometric parameters of the nanofilter are
ds=55 nm, dd=300 nm, and ld= ls=0.5 �m. We consider
DNA molecules with contour lengths of 50bp, 150bp, and
300bp. The corresponding effective rod lengths are 14 nm,
45 nm, and 87 nm, respectively �34,35�. The effective charge
q̃ is calculated using Eq. �5�. In the present work, numerical
values for the free-solution diffusion coefficient Dd are taken
from the experimental results of Lukacs et al. �48�. Although
the value of the free-solution mobility �0 can in principle be
also determined from direct experimental measurements, a
number of poorly characterized effects, such as electroos-
motic flow and molecule-tagging additives, typically make
this difficult. Fortunately, the similarity �49� between the
electroosmotic flow profile and the electric field means that
in most cases the former can be accounted for through a shift
in free-solution mobility �30,31�. In the present work, �0 was
inferred by comparison with the experimental data of
Fu et al. �7�.

The partition coefficients are calculated by discretizing
the interstitial space of the unit nanofilter using square cells
of size 1 nm, whereby the local orientational partition func-
tion ���r�� is calculated at the center of each cell by enumer-
ating the possible orientations of a rod whose center of mass
is located at r. Partition coefficients �K� are then calculated
using Eqs. �18� and �19�.

Thus, in this formulation, a DNA molecule is character-
ized by three parameters, namely, q̃, Dd, and K, the last of
which is also dependent on the geometry of the nanofilter
device. The parameters of different DNA molecules used in
the subsequent calculations are listed in Table I.

Figure 2 shows the comparison of the trapping time as a
function of molecule length and electric-field strength with
the experimental data of Fu et al. �7�. The largest Peclet
number associated with these data is 0.31 �associated rota-
tional Peclet number is 0.34�, placing most of the experimen-
tal data well within the validity range of our model, but also
enabling us to test the validity of our model beyond its strict
limits of applicability. The agreement with experiments is
good, especially after considering that no particular attempt
at optimizing the agreement was made and that the experi-
mental results should differ somewhat from our predictions
due to a number of “complicating” or poorly characterized

TABLE I. Free solution transport parameters and partition coef-
ficients of DNA molecules.

DNA size
�bp�

�0

�10−4 cm2 V−1 s−1�
D0

�10−7 cm2 s−1� K

50 0.63 2.0 0.90

150 0.63 1.1 0.66

300 0.63 0.71 0.42
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FIG. 2. �Color online� Comparison of analytical results �solid
curves with hollow markers� and the experimental data �dotted
curves with solid markers� for the trapping time �7�.
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FIG. 3. �Color online� The field dependence of the trapping
effect �t=�trap /�travel of dsDNA molecules in the nanofilter. Trap-
ping effect is maximized at low electric fields, leading to better
separation.
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effects not included in our model, such as the exact geometry
of the sieving structures �e.g., sloped walls, mildly variable
well and shallow-region depths, etc.�, the presence of com-
plex electroosmotic flow, complex partitioning of the mol-
ecules in the Debye layer, flexibility of DNA molecules, etc.
In the following sections we discuss our model predictions
for the effect of various factors on the nanofilter perfor-
mance.

A. Effect of the field strength

As a specific molecule with a given q̃ migrates in a nano-
filter with specific values of L, � and �, � is proportional to
the electric field Eav. Figure 3 shows the dependence of the
trapping delay on the electric-field strength for DNA mol-
ecules of length 50bp, 150bp, and 300bp. The trapping effect
decreases swiftly with increasing field strength. More explic-
itly, noting that ��Eav, from Eq. �38� it is easy to see that
the field dependence of �t changes from �t�Eav

0 ��trap
�Eav

−1� at low field ���1� to �t�Eav
−1

��trap�Eav
−2� at high field ���1, which for typical devices

corresponds to Pe	O�1��. Thus at sufficiently high electric
field, �t�0, suggesting a negligible trapping effect, although
it needs to be recalled that, as explained before, a number of
our modeling assumptions may be invalid for Pe�1. Despite
this, the loss of trapping effect at high field has been ob-
served both in experimental studies �6� and stochastic model
simulations �36�. The work in �36� also identified a contribu-
tion that becomes important at high fields, namely, torque-
assisted escape. According to our model, a high electric field
results in significant molecule aggregation at the deep-
shallow transition, leading to an increased escape rate.
Therefore, low electric field is recommended for effective
separation utilizing the difference in trapping time of biomol-
ecules.

B. Effect of partition coefficient

Equations �38� and �39� indicate that the K dependence of
trapping time takes the form �trap��1−K��1−�2K� /K. This
relationship, valid for all K, includes contributions from the
fraction of molecules entering the pore �K�, the fraction of
rejected molecules �1−K� and the diffusive flux in the nar-
row region �1−�2K�. This is in contrast to Kramers-type
models, which predict �trap�1 /K �in agreement with our
result only for K�1�.

Since longer molecules have smaller values of K, the
above expression predicts that longer molecules travel
slower, in agreement with experimental observations of the
length dependence of mobilities of short DNA molecules �7�.
This tendency is also in line with the scaling theory for linear
translocation because no hairpin can be formed in short DNA
rods and the translocation is always led by its ends �20�.

Noting that K is dependent on both the molecular size and
filter geometry, an ideal filter design should produce well
separated values of �1−K��1−�2K� /K for the molecules to
be separated efficiently.

C. Effect of length of shallow region

The length of the shallow region �ls�, which has been
neglected in most models based on Kramers theory, plays an

important role in hindered transport of molecules in nano-
fluidic systems. As an example, Fig. 4 shows the dependence
of trapping effect as a function of ls under varied field
strengths. Specifically, the abscissa denotes the ratio of the
shallow region in total nanofilter r= ls /L=� / �1+��. Thus r
→0 represents an ultrashort shallow region; r=0.5 denotes
equal length of deep and shallow regions �ld= ls�, while
r→1 corresponds to a very long shallow region. Under low
electric fields ���1�, �t�

�1−K�
K

�1−�2K�
�1+���

�
��+�� . Setting

d�t /d�=0 yields �=1, for all � and K, suggesting that the
trapping effect is maximized at the region close to �=1 in the
low-field regime �see the solid curve representing an electric
field of 24.13 V/cm in Fig. 4�; thus ld= ls is recommended for
optimally utilizing the trapping effect to separate molecules.

An explicit expression for the value of � that yields maxi-
mum trapping effect under higher electric fields is not avail-
able. However, from the dotted curve in Fig. 4, representing
an electric field of 126.8 V/cm �Pe�0.63�, one may find that
the maximum is shifted toward �	1 �ls	 ld�, suggesting
that, in this regime, one has to consider increasing the length
of the shallow region to achieve better separation when
higher electric field is adopted.

The results in Fig. 4 also show that for very short shallow
region �r→0�, the trapping effect becomes negligible
��t→0�. Such reduction of trapping effect and flux enhance-
ment in ultrathin membranes �corresponding to a very small
ls in our system�, has been observed in recent experiments
�26�. Although this situation is not utilizing the entropic bar-
rier, it may have potential in the area of size-exclusion ultra-
filtration, because the flow of molecules smaller than the
pore size is essentially not hindered. This indicates that
ultrathin membranes are preferred for size-exclusion ultrafil-
tration, which can produce the highest possible production
rate because all the molecules that can pass through are al-
most unhindered. Our model also predicts loss of the trap-
ping effect in systems with a very long shallow region

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r

� t

24.13V/cm
63.42V/cm
126.8V/cm

FIG. 4. �Color online� Dependence of trapping effect of 300bp
dsDNA on r= ls /L. In the low-field regime ���1� maximum trap-
ping occurs for ld= ls. The trapping time approaches 0 for very long
or ultrashort shallow regions.
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��→1,�→��. This setup is not expected to be frequently
used in applications.

D. Role of nonuniform probability distribution and diffusion

Figure 5 shows the spatial distribution of reduced prob-
ability Px,0

� �x� of a 300bp dsDNA molecule �K�0.42� under
varied electric fields. Three electric-field strengths are con-
sidered, namely, 24.13, 43.77, and 63.42 V/cm; the corre-
sponding Peclet numbers are 0.12, 0.22, and 0.31, respec-
tively, while the corresponding rotational Peclet numbers are
0.13, 0.23, and 0.34, respectively. The jump in Px,0

� �x� at the
interface between the deep and shallow region, namely,
Px,0

� �ld+� / Px,0
� �ld−�=�K=0.077, is a result of the potential-

energy jump at the interface �see Eqs. �24� and �25� and the
discussion of section 2.6.3�. Similar jumps can be seen at the
cell edge �cf. Fig. 1� where, Px,0

� �0−� / Px,0
� �0+�=�K �or,

equivalently, Px,0
� �L−� / Px,0

� �L+�=�K�.
Figure 5 provides a number of insights into the transport

process, such as the effect of the entropy barrier at the
deep-shallow region junction, the field-induced molecular
aggregation in the same region, and the resulting impact on
the migration dynamics. The entropy barrier hinders the drift
of biomolecules, causing them to aggregate at the entrance to
the narrow region. This aggregation process is balanced by
diffusion, which acts toward creating a uniform distribution.
A direct implication of this is that, in addition to free-
solution mobility, the overall electrophoretic mobility of
molecules in the nanofilter is affected by their diffusivity.

Our results show that, compared to the residence time
with no sieving �d

0= ld /�0Ed, the molecule’s average resi-
dence time in the well increases to �d= �1+�d��d

0. The rela-
tive delay in the well, �d, is given by

�d =
1 + ��

1 − �2K
�t. �42�

On the other hand, the nonuniform particle distribution in the
shallow region results in diffusive transport that decreases

the residence time from �s
0= ls /�0Es to �s= �1−�s��s

0, where

�s =
�K

�

1 + ��

1 − �2K
�t. �43�

The total residence time in the nanofilter changes from the
sieving-free value �travel=�d

0+�s
0 to �= �1+�t��travel.

V. CONCLUDING REMARKS

We have presented an analytical solution of a quasi-one-
dimensional formulation of Ogston sieving of biomolecules
in nanofilters utilizing an array of deep and shallow regions.
Our model is based on a number of assumptions such as a
uniform electric field in both the deep and shallow regions,
and that the molecules of interest are sufficiently short or
rigid for a rigid-molecule model to be valid. Moreover, we
assume that the distribution of particles is uniform in the
directions transverse to the direction of travel, that sufficient
time exists for molecules to sample all possible rotational
configurations at all the points in a nanofilter unit, and that
torque-assisted escape effects �36� are negligible. As dis-
cussed above, the latter assumptions are expected to be valid
for small molecules under low electric fields �Pe�1�, al-
though we believe that they remain reasonable even for mod-
erate electric fields �Pe�1�. We would like to emphasize,
however, that even if these assumptions are not valid �e.g.,
for Pe�1�, our analytical results remain an exact solution of
the one-dimensional problem formulated in Secs. II and III.

The analytical expressions for the electrophoretic mobility
and the trapping time presented reproduce both qualitatively
and to a good extent quantitatively the size and electric-field
dependence of effective mobility of biomolecules in the
Ogston sieving regime �7�. In fact, the agreement of our
model’s predictions with available experimental results is
very encouraging considering that a number of “complicat-
ing” or poorly characterized effects are not included in our
model, such as the exact geometry of the sieving structures
�e.g., sloped walls, mildly variable well and shallow-region
depth, etc.�, complex partitioning of the molecules in the
Debye layer, etc.

The closed-form expressions derived from our model pro-
vide insight into the physical mechanisms of the separation
process absent in previous Kramers-type models. In particu-
lar, particle aggregation before the entrance to the shallow
region and its effect on the particle distribution and trapping
time is highlighted and quantitatively described. The theoret-
ical framework proposed in this paper can also be applied to
other similar problems, such as biomolecule transport
through nanopores or anisotropic nanofilter arrays �50,51�, to
provide insight into molecular transport at the nanoscale.

The special case where field strengths in the well and the
shallow regions are equal �i.e., the case corresponding to the
formulation of �33�� can be obtained directly from our results
by replacing K with K�=dsK /dd and � with ��=1. Our mo-
bility results are also in agreement with those calculated by
numerical evaluation of the integral definitions given in �52�.

Our assumption of fast equilibration of the rotational de-
grees of freedom allows the use of orientationally averaged
transport coefficients �drag, diffusion coefficient�. In general,
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FIG. 5. �Color online� Reduced probability density profile of
300bp dsDNA molecules in a nanofilter with K=0.42 under differ-
ent electric fields.
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one may expect different average transport coefficients in the
deep and shallow regions as a result of the different states
available to the molecules in these two regions �30�. This
phenomenon can be included in our formulation by a suitable
redefinition of K.

The formulation derived in this paper can be applied to
other charged particles traveling in nanofilter arrays, pro-
vided they can be treated as rigid bodies �isotropic or aniso-
tropic�. The resulting model requires knowledge of the par-
ticles’ free-solution mobility, free-solution diffusivity and
partition coefficients.

Future work will focus on developing explicit results for
the effective dispersion in such nanofiltration systems. We
expect the analytical solution to be complex, but reduce to
the integral form given in �52� under the special case of
constant field, and the explicit solution in �33� when, in ad-

dition to constant field, the friction coefficients of both im-
miscible fluid layers are identical.

Future work will also concentrate on extending the for-
mulation presented here to longer molecules. This can be
achieved using partition coefficients calculated from worm-
like chain formulations �53�. We expect the results of such
calculations to be acceptable for qualitative purposes in the
transition between Ogston and entropic regimes. However,
such a model will not be applicable in the entropic trapping
regime.
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